Support vector regression for warranty claim forecasting
نویسندگان
چکیده
منابع مشابه
Support vector regression for warranty claim forecasting
Forecasting the number of warranty claims is vitally important for manufacturers/warranty providers in preparing fiscal plans. In existing literature, a number of techniques such as log-linear Poisson models, Kalman filter, time series models, and artificial neural network models have been developed. Nevertheless, one might find two weaknesses existing in these approaches: (1) they do not consi...
متن کاملWarranty claim forecasting based on
5 Warranty claims reported in recent months might carry more up-to-date information than 6 those reported in earlier months. Using weighted maximum likelihood estimation for esti7 mating model parameters might therefore lead to better performance of warranty forecast8 ing models than maximum likelihood estimation. This paper examines this issue and also 9 presents comparison of the forecasting ...
متن کاملSupport Vector Regression in Forecasting
Support Vector Regression (SVR), a category for Support Vector Machine (SVM) attempts to minimize the generalization error bound so as to achieve generalized performance. Regression is that of finding a function which approximates mapping from an input domain to the real numbers on the basis of a training sample. Support vector regression is the natural extension of large margin kernel methods ...
متن کاملSolar Power Forecasting Using Support Vector Regression
Generation and load balance is required in the economic scheduling of generating units in the smart grid. Variable energy generations particularly from wind and solar energy resources are witnessing a rapid boost, and, it is anticipated that with a certain level of their penetration, they become noteworthy sources of uncertainty. As in the case of load demand, energy forecasting can also be use...
متن کاملAn Enhanced Support Vector Regression Model for Weather Forecasting
An attempt is made in this paper to develop an Enhanced Support Vector Regression (ESVR ) model with more un-interpretable kernel functions in the domain of forecasting the weather conditions. Every predicate model takes input data set parameters, processing with in specified levels of classification into variable sets and countered with a variable set reduction to reach the decision of predict...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: European Journal of Operational Research
سال: 2011
ISSN: 0377-2217
DOI: 10.1016/j.ejor.2011.03.009